Você pode pedir a um modelo Gemini para gerar e editar imagens usando solicitações somente de texto e de texto e imagem. Ao usar Firebase AI Logic, é possível fazer essa solicitação diretamente do app.
Com esse recurso, é possível:
Gere imagens de forma iterativa por conversa em linguagem natural, ajustando as imagens e mantendo a consistência e o contexto.
Gere imagens com renderização de texto de alta qualidade, incluindo strings longas de texto.
Gere uma saída de texto e imagem intercalada. Por exemplo, uma postagem de blog com texto e imagens em uma única interação. Antes, isso exigia a combinação de vários modelos.
Gere imagens usando o conhecimento de mundo e os recursos de raciocínio do Gemini.
Confira uma lista completa de modalidades e recursos compatíveis (com exemplos de comandos) mais adiante nesta página.
Para saída de imagem, use o modelo Gemini
gemini-2.0-flash-preview-image-generation
e inclua
responseModalities: ["TEXT", "IMAGE"]
Ir para o código de texto em imagem Ir para o código de texto e imagens intercalados
Ir para o código de edição de imagens Ir para o código de edição iterativa de imagens
Consulte outros guias para mais opções de como trabalhar com imagens Analisar imagens Analisar imagens no dispositivo Gerar saída estruturada |
Como escolher entre os modelos Gemini e Imagen
Os SDKs Firebase AI Logic são compatíveis com a geração de imagens usando um modelo Gemini ou Imagen. Na maioria dos casos de uso, comece com Gemini e escolha Imagen para tarefas especializadas em que a qualidade da imagem é essencial.
Os SDKs do Firebase AI Logic ainda não são compatíveis com entrada de imagem (como para edição) com modelos Imagen. Portanto, se você quiser trabalhar com imagens de entrada, use um modelo Gemini.
Escolha Gemini quando quiser:
- Usar conhecimento de mundo e raciocínio para gerar imagens contextualmente relevantes.
- Para combinar texto e imagens de forma integrada.
- Para incorporar recursos visuais precisos em longas sequências de texto.
- Para editar imagens de forma conversacional, mantendo o contexto.
Escolha Imagen quando quiser:
- Para priorizar a qualidade da imagem, o fotorrealismo, os detalhes artísticos ou estilos específicos (por exemplo, impressionismo ou anime).
- Para especificar explicitamente a proporção ou o formato das imagens geradas.
Antes de começar
Clique no seu provedor de Gemini API para conferir o conteúdo e o código específicos do provedor nesta página. |
Se ainda não tiver feito isso, conclua o
guia de primeiros passos, que descreve como
configurar seu projeto do Firebase, conectar seu app ao Firebase, adicionar o SDK,
inicializar o serviço de back-end para o provedor Gemini API escolhido e
criar uma instância GenerativeModel
.
Para testar e iterar em seus comandos e até mesmo receber um snippet de código gerado, recomendamos usar Google AI Studio.
Modelos compatíveis com esse recurso
A saída de imagem de Gemini é compatível apenas com gemini-2.0-flash-preview-image-generation
(não gemini-2.0-flash
).
Os SDKs também são compatíveis com geração de imagens usando modelos Imagen.
Gerar e editar imagens
Você pode gerar e editar imagens usando um modelo Gemini.
Gerar imagens (entrada somente de texto)
Antes de testar esta amostra, conclua a seção
Antes de começar deste guia
para configurar seu projeto e app. Nessa seção, clique também em um botão do provedor de Gemini API escolhido para ver o conteúdo específico do provedor nesta página. |
Você pode pedir a um modelo Gemini para gerar imagens usando comandos de texto.
Crie uma instância GenerativeModel
, inclua responseModalities: ["TEXT", "IMAGE"]
generateContent
.
Swift
import FirebaseAI
// Initialize the Gemini Developer API backend service
// Create a `GenerativeModel` instance with a Gemini model that supports image output
let generativeModel = FirebaseAI.firebaseAI(backend: .googleAI()).generativeModel(
modelName: "gemini-2.0-flash-preview-image-generation",
// Configure the model to respond with text and images
generationConfig: GenerationConfig(responseModalities: [.text, .image])
)
// Provide a text prompt instructing the model to generate an image
let prompt = "Generate an image of the Eiffel tower with fireworks in the background."
// To generate an image, call `generateContent` with the text input
let response = try await model.generateContent(prompt)
// Handle the generated image
guard let inlineDataPart = response.inlineDataParts.first else {
fatalError("No image data in response.")
}
guard let uiImage = UIImage(data: inlineDataPart.data) else {
fatalError("Failed to convert data to UIImage.")
}
Kotlin
// Initialize the Gemini Developer API backend service
// Create a `GenerativeModel` instance with a Gemini model that supports image output
val model = Firebase.ai(backend = GenerativeBackend.googleAI()).generativeModel(
modelName = "gemini-2.0-flash-preview-image-generation",
// Configure the model to respond with text and images
generationConfig = generationConfig {
responseModalities = listOf(ResponseModality.TEXT, ResponseModality.IMAGE) }
)
// Provide a text prompt instructing the model to generate an image
val prompt = "Generate an image of the Eiffel tower with fireworks in the background."
// To generate image output, call `generateContent` with the text input
val generatedImageAsBitmap = model.generateContent(prompt)
// Handle the generated image
.candidates.first().content.parts.firstNotNullOf { it.asImageOrNull() }
Java
// Initialize the Gemini Developer API backend service
// Create a `GenerativeModel` instance with a Gemini model that supports image output
GenerativeModel ai = FirebaseAI.getInstance(GenerativeBackend.googleAI()).generativeModel(
"gemini-2.0-flash-preview-image-generation",
// Configure the model to respond with text and images
new GenerationConfig.Builder()
.setResponseModalities(Arrays.asList(ResponseModality.TEXT, ResponseModality.IMAGE))
.build()
);
GenerativeModelFutures model = GenerativeModelFutures.from(ai);
// Provide a text prompt instructing the model to generate an image
Content prompt = new Content.Builder()
.addText("Generate an image of the Eiffel Tower with fireworks in the background.")
.build();
// To generate an image, call `generateContent` with the text input
ListenableFuture<GenerateContentResponse> response = model.generateContent(prompt);
Futures.addCallback(response, new FutureCallback<GenerateContentResponse>() {
@Override
public void onSuccess(GenerateContentResponse result) {
// iterate over all the parts in the first candidate in the result object
for (Part part : result.getCandidates().get(0).getContent().getParts()) {
if (part instanceof ImagePart) {
ImagePart imagePart = (ImagePart) part;
// The returned image as a bitmap
Bitmap generatedImageAsBitmap = imagePart.getImage();
break;
}
}
}
@Override
public void onFailure(Throwable t) {
t.printStackTrace();
}
}, executor);
Web
import { initializeApp } from "firebase/app";
import { getAI, getGenerativeModel, GoogleAIBackend, ResponseModality } from "firebase/ai";
// TODO(developer) Replace the following with your app's Firebase configuration
// See: https://firebase.google.com/docs/web/learn-more#config-object
const firebaseConfig = {
// ...
};
// Initialize FirebaseApp
const firebaseApp = initializeApp(firebaseConfig);
// Initialize the Gemini Developer API backend service
const ai = getAI(firebaseApp, { backend: new GoogleAIBackend() });
// Create a `GenerativeModel` instance with a model that supports your use case
const model = getGenerativeModel(ai, {
model: "gemini-2.0-flash-preview-image-generation",
// Configure the model to respond with text and images
generationConfig: {
responseModalities: [ResponseModality.TEXT, ResponseModality.IMAGE],
},
});
// Provide a text prompt instructing the model to generate an image
const prompt = 'Generate an image of the Eiffel Tower with fireworks in the background.';
// To generate an image, call `generateContent` with the text input
const result = model.generateContent(prompt);
// Handle the generated image
try {
const inlineDataParts = result.response.inlineDataParts();
if (inlineDataParts?.[0]) {
const image = inlineDataParts[0].inlineData;
console.log(image.mimeType, image.data);
}
} catch (err) {
console.error('Prompt or candidate was blocked:', err);
}
Dart
import 'package:firebase_ai/firebase_ai.dart';
import 'package:firebase_core/firebase_core.dart';
import 'firebase_options.dart';
await Firebase.initializeApp(
options: DefaultFirebaseOptions.currentPlatform,
);
// Initialize the Gemini Developer API backend service
// Create a `GenerativeModel` instance with a Gemini model that supports image output
final model = FirebaseAI.googleAI().generativeModel(
model: 'gemini-2.0-flash-preview-image-generation',
// Configure the model to respond with text and images
generationConfig: GenerationConfig(responseModalities: [ResponseModality.text, ResponseModality.image]),
);
// Provide a text prompt instructing the model to generate an image
final prompt = [Content.text('Generate an image of the Eiffel Tower with fireworks in the background.')];
// To generate an image, call `generateContent` with the text input
final response = await model.generateContent(prompt);
if (response.inlineDataParts.isNotEmpty) {
final imageBytes = response.inlineDataParts[0].bytes;
// Process the image
} else {
// Handle the case where no images were generated
print('Error: No images were generated.');
}
Unity
using Firebase;
using Firebase.AI;
// Initialize the Gemini Developer API backend service
// Create a `GenerativeModel` instance with a Gemini model that supports image output
var model = FirebaseAI.GetInstance(FirebaseAI.Backend.GoogleAI()).GetGenerativeModel(
modelName: "gemini-2.0-flash-preview-image-generation",
// Configure the model to respond with text and images
generationConfig: new GenerationConfig(
responseModalities: new[] { ResponseModality.Text, ResponseModality.Image })
);
// Provide a text prompt instructing the model to generate an image
var prompt = "Generate an image of the Eiffel Tower with fireworks in the background.";
// To generate an image, call `GenerateContentAsync` with the text input
var response = await model.GenerateContentAsync(prompt);
var text = response.Text;
if (!string.IsNullOrWhiteSpace(text)) {
// Do something with the text
}
// Handle the generated image
var imageParts = response.Candidates.First().Content.Parts
.OfType<ModelContent.InlineDataPart>()
.Where(part => part.MimeType == "image/png");
foreach (var imagePart in imageParts) {
// Load the Image into a Unity Texture2D object
UnityEngine.Texture2D texture2D = new(2, 2);
if (texture2D.LoadImage(imagePart.Data.ToArray())) {
// Do something with the image
}
}
Gerar resposta com textos e imagens
Antes de testar esta amostra, conclua a seção
Antes de começar deste guia
para configurar seu projeto e app. Nessa seção, clique também em um botão do provedor de Gemini API escolhido para ver o conteúdo específico do provedor nesta página. |
Você pode pedir a um modelo Gemini para gerar imagens intercaladas com as respostas de texto. Por exemplo, você pode gerar imagens de como cada etapa de uma receita gerada pode ser, junto com as instruções da etapa, sem precisar fazer solicitações separadas ao modelo ou a modelos diferentes.
Crie uma instância GenerativeModel
, inclua responseModalities: ["TEXT", "IMAGE"]
generateContent
.
Swift
import FirebaseAI
// Initialize the Gemini Developer API backend service
// Create a `GenerativeModel` instance with a Gemini model that supports image output
let generativeModel = FirebaseAI.firebaseAI(backend: .googleAI()).generativeModel(
modelName: "gemini-2.0-flash-preview-image-generation",
// Configure the model to respond with text and images
generationConfig: GenerationConfig(responseModalities: [.text, .image])
)
// Provide a text prompt instructing the model to generate interleaved text and images
let prompt = """
Generate an illustrated recipe for a paella.
Create images to go alongside the text as you generate the recipe
"""
// To generate interleaved text and images, call `generateContent` with the text input
let response = try await model.generateContent(prompt)
// Handle the generated text and image
guard let candidate = response.candidates.first else {
fatalError("No candidates in response.")
}
for part in candidate.content.parts {
switch part {
case let textPart as TextPart:
// Do something with the generated text
let text = textPart.text
case let inlineDataPart as InlineDataPart:
// Do something with the generated image
guard let uiImage = UIImage(data: inlineDataPart.data) else {
fatalError("Failed to convert data to UIImage.")
}
default:
fatalError("Unsupported part type: \(part)")
}
}
Kotlin
// Initialize the Gemini Developer API backend service
// Create a `GenerativeModel` instance with a Gemini model that supports image output
val model = Firebase.ai(backend = GenerativeBackend.googleAI()).generativeModel(
modelName = "gemini-2.0-flash-preview-image-generation",
// Configure the model to respond with text and images
generationConfig = generationConfig {
responseModalities = listOf(ResponseModality.TEXT, ResponseModality.IMAGE) }
)
// Provide a text prompt instructing the model to generate interleaved text and images
val prompt = """
Generate an illustrated recipe for a paella.
Create images to go alongside the text as you generate the recipe
""".trimIndent()
// To generate interleaved text and images, call `generateContent` with the text input
val responseContent = model.generateContent(prompt).candidates.first().content
// The response will contain image and text parts interleaved
for (part in responseContent.parts) {
when (part) {
is ImagePart -> {
// ImagePart as a bitmap
val generatedImageAsBitmap: Bitmap? = part.asImageOrNull()
}
is TextPart -> {
// Text content from the TextPart
val text = part.text
}
}
}
Java
// Initialize the Gemini Developer API backend service
// Create a `GenerativeModel` instance with a Gemini model that supports image output
GenerativeModel ai = FirebaseAI.getInstance(GenerativeBackend.googleAI()).generativeModel(
"gemini-2.0-flash-preview-image-generation",
// Configure the model to respond with text and images
new GenerationConfig.Builder()
.setResponseModalities(Arrays.asList(ResponseModality.TEXT, ResponseModality.IMAGE))
.build()
);
GenerativeModelFutures model = GenerativeModelFutures.from(ai);
// Provide a text prompt instructing the model to generate interleaved text and images
Content prompt = new Content.Builder()
.addText("Generate an illustrated recipe for a paella.\n" +
"Create images to go alongside the text as you generate the recipe")
.build();
// To generate interleaved text and images, call `generateContent` with the text input
ListenableFuture<GenerateContentResponse> response = model.generateContent(prompt);
Futures.addCallback(response, new FutureCallback<GenerateContentResponse>() {
@Override
public void onSuccess(GenerateContentResponse result) {
Content responseContent = result.getCandidates().get(0).getContent();
// The response will contain image and text parts interleaved
for (Part part : responseContent.getParts()) {
if (part instanceof ImagePart) {
// ImagePart as a bitmap
Bitmap generatedImageAsBitmap = ((ImagePart) part).getImage();
} else if (part instanceof TextPart){
// Text content from the TextPart
String text = ((TextPart) part).getText();
}
}
}
@Override
public void onFailure(Throwable t) {
System.err.println(t);
}
}, executor);
Web
import { initializeApp } from "firebase/app";
import { getAI, getGenerativeModel, GoogleAIBackend, ResponseModality } from "firebase/ai";
// TODO(developer) Replace the following with your app's Firebase configuration
// See: https://firebase.google.com/docs/web/learn-more#config-object
const firebaseConfig = {
// ...
};
// Initialize FirebaseApp
const firebaseApp = initializeApp(firebaseConfig);
// Initialize the Gemini Developer API backend service
const ai = getAI(firebaseApp, { backend: new GoogleAIBackend() });
// Create a `GenerativeModel` instance with a model that supports your use case
const model = getGenerativeModel(ai, {
model: "gemini-2.0-flash-preview-image-generation",
// Configure the model to respond with text and images
generationConfig: {
responseModalities: [ResponseModality.TEXT, ResponseModality.IMAGE],
},
});
// Provide a text prompt instructing the model to generate interleaved text and images
const prompt = 'Generate an illustrated recipe for a paella.\n.' +
'Create images to go alongside the text as you generate the recipe';
// To generate interleaved text and images, call `generateContent` with the text input
const result = await model.generateContent(prompt);
// Handle the generated text and image
try {
const response = result.response;
if (response.candidates?.[0].content?.parts) {
for (const part of response.candidates?.[0].content?.parts) {
if (part.text) {
// Do something with the text
console.log(part.text)
}
if (part.inlineData) {
// Do something with the image
const image = part.inlineData;
console.log(image.mimeType, image.data);
}
}
}
} catch (err) {
console.error('Prompt or candidate was blocked:', err);
}
Dart
import 'package:firebase_ai/firebase_ai.dart';
import 'package:firebase_core/firebase_core.dart';
import 'firebase_options.dart';
await Firebase.initializeApp(
options: DefaultFirebaseOptions.currentPlatform,
);
// Initialize the Gemini Developer API backend service
// Create a `GenerativeModel` instance with a Gemini model that supports image output
final model = FirebaseAI.googleAI().generativeModel(
model: 'gemini-2.0-flash-preview-image-generation',
// Configure the model to respond with text and images
generationConfig: GenerationConfig(responseModalities: [ResponseModality.text, ResponseModality.image]),
);
// Provide a text prompt instructing the model to generate interleaved text and images
final prompt = [Content.text(
'Generate an illustrated recipe for a paella\n ' +
'Create images to go alongside the text as you generate the recipe'
)];
// To generate interleaved text and images, call `generateContent` with the text input
final response = await model.generateContent(prompt);
// Handle the generated text and image
final parts = response.candidates.firstOrNull?.content.parts
if (parts.isNotEmpty) {
for (final part in parts) {
if (part is TextPart) {
// Do something with text part
final text = part.text
}
if (part is InlineDataPart) {
// Process image
final imageBytes = part.bytes
}
}
} else {
// Handle the case where no images were generated
print('Error: No images were generated.');
}
Unity
using Firebase;
using Firebase.AI;
// Initialize the Gemini Developer API backend service
// Create a `GenerativeModel` instance with a Gemini model that supports image output
var model = FirebaseAI.GetInstance(FirebaseAI.Backend.GoogleAI()).GetGenerativeModel(
modelName: "gemini-2.0-flash-preview-image-generation",
// Configure the model to respond with text and images
generationConfig: new GenerationConfig(
responseModalities: new[] { ResponseModality.Text, ResponseModality.Image })
);
// Provide a text prompt instructing the model to generate interleaved text and images
var prompt = "Generate an illustrated recipe for a paella \n" +
"Create images to go alongside the text as you generate the recipe";
// To generate interleaved text and images, call `GenerateContentAsync` with the text input
var response = await model.GenerateContentAsync(prompt);
// Handle the generated text and image
foreach (var part in response.Candidates.First().Content.Parts) {
if (part is ModelContent.TextPart textPart) {
if (!string.IsNullOrWhiteSpace(textPart.Text)) {
// Do something with the text
}
} else if (part is ModelContent.InlineDataPart dataPart) {
if (dataPart.MimeType == "image/png") {
// Load the Image into a Unity Texture2D object
UnityEngine.Texture2D texture2D = new(2, 2);
if (texture2D.LoadImage(dataPart.Data.ToArray())) {
// Do something with the image
}
}
}
}
Editar imagens (entrada de texto e imagem)
Antes de testar esta amostra, conclua a seção
Antes de começar deste guia
para configurar seu projeto e app. Nessa seção, clique também em um botão do provedor de Gemini API escolhido para ver o conteúdo específico do provedor nesta página. |
Você pode pedir a um modelo Gemini para editar imagens usando comandos de texto e uma ou mais imagens.
Crie uma instância GenerativeModel
, inclua responseModalities: ["TEXT", "IMAGE"]
generateContent
.
Swift
import FirebaseAI
// Initialize the Gemini Developer API backend service
// Create a `GenerativeModel` instance with a Gemini model that supports image output
let generativeModel = FirebaseAI.firebaseAI(backend: .googleAI()).generativeModel(
modelName: "gemini-2.0-flash-preview-image-generation",
// Configure the model to respond with text and images
generationConfig: GenerationConfig(responseModalities: [.text, .image])
)
// Provide an image for the model to edit
guard let image = UIImage(named: "scones") else { fatalError("Image file not found.") }
// Provide a text prompt instructing the model to edit the image
let prompt = "Edit this image to make it look like a cartoon"
// To edit the image, call `generateContent` with the image and text input
let response = try await model.generateContent(image, prompt)
// Handle the generated image
guard let inlineDataPart = response.inlineDataParts.first else {
fatalError("No image data in response.")
}
guard let uiImage = UIImage(data: inlineDataPart.data) else {
fatalError("Failed to convert data to UIImage.")
}
Kotlin
// Initialize the Gemini Developer API backend service
// Create a `GenerativeModel` instance with a Gemini model that supports image output
val model = Firebase.ai(backend = GenerativeBackend.googleAI()).generativeModel(
modelName = "gemini-2.0-flash-preview-image-generation",
// Configure the model to respond with text and images
generationConfig = generationConfig {
responseModalities = listOf(ResponseModality.TEXT, ResponseModality.IMAGE) }
)
// Provide an image for the model to edit
val bitmap = BitmapFactory.decodeResource(context.resources, R.drawable.scones)
// Provide a text prompt instructing the model to edit the image
val prompt = content {
image(bitmap)
text("Edit this image to make it look like a cartoon")
}
// To edit the image, call `generateContent` with the prompt (image and text input)
val generatedImageAsBitmap = model.generateContent(prompt)
// Handle the generated text and image
.candidates.first().content.parts.firstNotNullOf { it.asImageOrNull() }
Java
// Initialize the Gemini Developer API backend service
// Create a `GenerativeModel` instance with a Gemini model that supports image output
GenerativeModel ai = FirebaseAI.getInstance(GenerativeBackend.googleAI()).generativeModel(
"gemini-2.0-flash-preview-image-generation",
// Configure the model to respond with text and images
new GenerationConfig.Builder()
.setResponseModalities(Arrays.asList(ResponseModality.TEXT, ResponseModality.IMAGE))
.build()
);
GenerativeModelFutures model = GenerativeModelFutures.from(ai);
// Provide an image for the model to edit
Bitmap bitmap = BitmapFactory.decodeResource(resources, R.drawable.scones);
// Provide a text prompt instructing the model to edit the image
Content promptcontent = new Content.Builder()
.addImage(bitmap)
.addText("Edit this image to make it look like a cartoon")
.build();
// To edit the image, call `generateContent` with the prompt (image and text input)
ListenableFuture<GenerateContentResponse> response = model.generateContent(promptcontent);
Futures.addCallback(response, new FutureCallback<GenerateContentResponse>() {
@Override
public void onSuccess(GenerateContentResponse result) {
// iterate over all the parts in the first candidate in the result object
for (Part part : result.getCandidates().get(0).getContent().getParts()) {
if (part instanceof ImagePart) {
ImagePart imagePart = (ImagePart) part;
Bitmap generatedImageAsBitmap = imagePart.getImage();
break;
}
}
}
@Override
public void onFailure(Throwable t) {
t.printStackTrace();
}
}, executor);
Web
import { initializeApp } from "firebase/app";
import { getAI, getGenerativeModel, GoogleAIBackend, ResponseModality } from "firebase/ai";
// TODO(developer) Replace the following with your app's Firebase configuration
// See: https://firebase.google.com/docs/web/learn-more#config-object
const firebaseConfig = {
// ...
};
// Initialize FirebaseApp
const firebaseApp = initializeApp(firebaseConfig);
// Initialize the Gemini Developer API backend service
const ai = getAI(firebaseApp, { backend: new GoogleAIBackend() });
// Create a `GenerativeModel` instance with a model that supports your use case
const model = getGenerativeModel(ai, {
model: "gemini-2.0-flash-preview-image-generation",
// Configure the model to respond with text and images
generationConfig: {
responseModalities: [ResponseModality.TEXT, ResponseModality.IMAGE],
},
});
// Prepare an image for the model to edit
async function fileToGenerativePart(file) {
const base64EncodedDataPromise = new Promise((resolve) => {
const reader = new FileReader();
reader.onloadend = () => resolve(reader.result.split(',')[1]);
reader.readAsDataURL(file);
});
return {
inlineData: { data: await base64EncodedDataPromise, mimeType: file.type },
};
}
// Provide a text prompt instructing the model to edit the image
const prompt = "Edit this image to make it look like a cartoon";
const fileInputEl = document.querySelector("input[type=file]");
const imagePart = await fileToGenerativePart(fileInputEl.files[0]);
// To edit the image, call `generateContent` with the image and text input
const result = await model.generateContent([prompt, imagePart]);
// Handle the generated image
try {
const inlineDataParts = result.response.inlineDataParts();
if (inlineDataParts?.[0]) {
const image = inlineDataParts[0].inlineData;
console.log(image.mimeType, image.data);
}
} catch (err) {
console.error('Prompt or candidate was blocked:', err);
}
Dart
import 'package:firebase_ai/firebase_ai.dart';
import 'package:firebase_core/firebase_core.dart';
import 'firebase_options.dart';
await Firebase.initializeApp(
options: DefaultFirebaseOptions.currentPlatform,
);
// Initialize the Gemini Developer API backend service
// Create a `GenerativeModel` instance with a Gemini model that supports image output
final model = FirebaseAI.googleAI().generativeModel(
model: 'gemini-2.0-flash-preview-image-generation',
// Configure the model to respond with text and images
generationConfig: GenerationConfig(responseModalities: [ResponseModality.text, ResponseModality.image]),
);
// Prepare an image for the model to edit
final image = await File('scones.jpg').readAsBytes();
final imagePart = InlineDataPart('image/jpeg', image);
// Provide a text prompt instructing the model to edit the image
final prompt = TextPart("Edit this image to make it look like a cartoon");
// To edit the image, call `generateContent` with the image and text input
final response = await model.generateContent([
Content.multi([prompt,imagePart])
]);
// Handle the generated image
if (response.inlineDataParts.isNotEmpty) {
final imageBytes = response.inlineDataParts[0].bytes;
// Process the image
} else {
// Handle the case where no images were generated
print('Error: No images were generated.');
}
Unity
using Firebase;
using Firebase.AI;
// Initialize the Gemini Developer API backend service
// Create a `GenerativeModel` instance with a Gemini model that supports image output
var model = FirebaseAI.GetInstance(FirebaseAI.Backend.GoogleAI()).GetGenerativeModel(
modelName: "gemini-2.0-flash-preview-image-generation",
// Configure the model to respond with text and images
generationConfig: new GenerationConfig(
responseModalities: new[] { ResponseModality.Text, ResponseModality.Image })
);
// Prepare an image for the model to edit
var imageFile = System.IO.File.ReadAllBytes(System.IO.Path.Combine(
UnityEngine.Application.streamingAssetsPath, "scones.jpg"));
var image = ModelContent.InlineData("image/jpeg", imageFile);
// Provide a text prompt instructing the model to edit the image
var prompt = ModelContent.Text("Edit this image to make it look like a cartoon.");
// To edit the image, call `GenerateContent` with the image and text input
var response = await model.GenerateContentAsync(new [] { prompt, image });
var text = response.Text;
if (!string.IsNullOrWhiteSpace(text)) {
// Do something with the text
}
// Handle the generated image
var imageParts = response.Candidates.First().Content.Parts
.OfType<ModelContent.InlineDataPart>()
.Where(part => part.MimeType == "image/png");
foreach (var imagePart in imageParts) {
// Load the Image into a Unity Texture2D object
Texture2D texture2D = new Texture2D(2, 2);
if (texture2D.LoadImage(imagePart.Data.ToArray())) {
// Do something with the image
}
}
Iterar e editar imagens usando o chat multiturno
Antes de testar esta amostra, conclua a seção
Antes de começar deste guia
para configurar seu projeto e app. Nessa seção, clique também em um botão do provedor de Gemini API escolhido para ver o conteúdo específico do provedor nesta página. |
Usando o chat com várias interações, você pode iterar com um modelo Gemini nas imagens geradas ou fornecidas por você.
Crie uma instância GenerativeModel
, inclua responseModalities: ["TEXT", "IMAGE"]
startChat()
e sendMessage()
para enviar mensagens de novos usuários.
Swift
import FirebaseAI
// Initialize the Gemini Developer API backend service
// Create a `GenerativeModel` instance with a Gemini model that supports image output
let generativeModel = FirebaseAI.firebaseAI(backend: .googleAI()).generativeModel(
modelName: "gemini-2.0-flash-preview-image-generation",
// Configure the model to respond with text and images
generationConfig: GenerationConfig(responseModalities: [.text, .image])
)
// Initialize the chat
let chat = model.startChat()
guard let image = UIImage(named: "scones") else { fatalError("Image file not found.") }
// Provide an initial text prompt instructing the model to edit the image
let prompt = "Edit this image to make it look like a cartoon"
// To generate an initial response, send a user message with the image and text prompt
let response = try await chat.sendMessage(image, prompt)
// Inspect the generated image
guard let inlineDataPart = response.inlineDataParts.first else {
fatalError("No image data in response.")
}
guard let uiImage = UIImage(data: inlineDataPart.data) else {
fatalError("Failed to convert data to UIImage.")
}
// Follow up requests do not need to specify the image again
let followUpResponse = try await chat.sendMessage("But make it old-school line drawing style")
// Inspect the edited image after the follow up request
guard let followUpInlineDataPart = followUpResponse.inlineDataParts.first else {
fatalError("No image data in response.")
}
guard let followUpUIImage = UIImage(data: followUpInlineDataPart.data) else {
fatalError("Failed to convert data to UIImage.")
}
Kotlin
// Initialize the Gemini Developer API backend service
// Create a `GenerativeModel` instance with a Gemini model that supports image output
val model = Firebase.ai(backend = GenerativeBackend.googleAI()).generativeModel(
modelName = "gemini-2.0-flash-preview-image-generation",
// Configure the model to respond with text and images
generationConfig = generationConfig {
responseModalities = listOf(ResponseModality.TEXT, ResponseModality.IMAGE) }
)
// Provide an image for the model to edit
val bitmap = BitmapFactory.decodeResource(context.resources, R.drawable.scones)
// Create the initial prompt instructing the model to edit the image
val prompt = content {
image(bitmap)
text("Edit this image to make it look like a cartoon")
}
// Initialize the chat
val chat = model.startChat()
// To generate an initial response, send a user message with the image and text prompt
var response = chat.sendMessage(prompt)
// Inspect the returned image
var generatedImageAsBitmap = response
.candidates.first().content.parts.firstNotNullOf { it.asImageOrNull() }
// Follow up requests do not need to specify the image again
response = chat.sendMessage("But make it old-school line drawing style")
generatedImageAsBitmap = response
.candidates.first().content.parts.firstNotNullOf { it.asImageOrNull() }
Java
// Initialize the Gemini Developer API backend service
// Create a `GenerativeModel` instance with a Gemini model that supports image output
GenerativeModel ai = FirebaseAI.getInstance(GenerativeBackend.googleAI()).generativeModel(
"gemini-2.0-flash-preview-image-generation",
// Configure the model to respond with text and images
new GenerationConfig.Builder()
.setResponseModalities(Arrays.asList(ResponseModality.TEXT, ResponseModality.IMAGE))
.build()
);
GenerativeModelFutures model = GenerativeModelFutures.from(ai);
// Provide an image for the model to edit
Bitmap bitmap = BitmapFactory.decodeResource(resources, R.drawable.scones);
// Initialize the chat
ChatFutures chat = model.startChat();
// Create the initial prompt instructing the model to edit the image
Content prompt = new Content.Builder()
.setRole("user")
.addImage(bitmap)
.addText("Edit this image to make it look like a cartoon")
.build();
// To generate an initial response, send a user message with the image and text prompt
ListenableFuture<GenerateContentResponse> response = chat.sendMessage(prompt);
// Extract the image from the initial response
ListenableFuture<@Nullable Bitmap> initialRequest = Futures.transform(response, result -> {
for (Part part : result.getCandidates().get(0).getContent().getParts()) {
if (part instanceof ImagePart) {
ImagePart imagePart = (ImagePart) part;
return imagePart.getImage();
}
}
return null;
}, executor);
// Follow up requests do not need to specify the image again
ListenableFuture<GenerateContentResponse> modelResponseFuture = Futures.transformAsync(
initialRequest,
generatedImage -> {
Content followUpPrompt = new Content.Builder()
.addText("But make it old-school line drawing style")
.build();
return chat.sendMessage(followUpPrompt);
},
executor);
// Add a final callback to check the reworked image
Futures.addCallback(modelResponseFuture, new FutureCallback<GenerateContentResponse>() {
@Override
public void onSuccess(GenerateContentResponse result) {
for (Part part : result.getCandidates().get(0).getContent().getParts()) {
if (part instanceof ImagePart) {
ImagePart imagePart = (ImagePart) part;
Bitmap generatedImageAsBitmap = imagePart.getImage();
break;
}
}
}
@Override
public void onFailure(Throwable t) {
t.printStackTrace();
}
}, executor);
Web
import { initializeApp } from "firebase/app";
import { getAI, getGenerativeModel, GoogleAIBackend, ResponseModality } from "firebase/ai";
// TODO(developer) Replace the following with your app's Firebase configuration
// See: https://firebase.google.com/docs/web/learn-more#config-object
const firebaseConfig = {
// ...
};
// Initialize FirebaseApp
const firebaseApp = initializeApp(firebaseConfig);
// Initialize the Gemini Developer API backend service
const ai = getAI(firebaseApp, { backend: new GoogleAIBackend() });
// Create a `GenerativeModel` instance with a model that supports your use case
const model = getGenerativeModel(ai, {
model: "gemini-2.0-flash-preview-image-generation",
// Configure the model to respond with text and images
generationConfig: {
responseModalities: [ResponseModality.TEXT, ResponseModality.IMAGE],
},
});
// Prepare an image for the model to edit
async function fileToGenerativePart(file) {
const base64EncodedDataPromise = new Promise((resolve) => {
const reader = new FileReader();
reader.onloadend = () => resolve(reader.result.split(',')[1]);
reader.readAsDataURL(file);
});
return {
inlineData: { data: await base64EncodedDataPromise, mimeType: file.type },
};
}
const fileInputEl = document.querySelector("input[type=file]");
const imagePart = await fileToGenerativePart(fileInputEl.files[0]);
// Provide an initial text prompt instructing the model to edit the image
const prompt = "Edit this image to make it look like a cartoon";
// Initialize the chat
const chat = model.startChat();
// To generate an initial response, send a user message with the image and text prompt
const result = await chat.sendMessage([prompt, imagePart]);
// Request and inspect the generated image
try {
const inlineDataParts = result.response.inlineDataParts();
if (inlineDataParts?.[0]) {
// Inspect the generated image
const image = inlineDataParts[0].inlineData;
console.log(image.mimeType, image.data);
}
} catch (err) {
console.error('Prompt or candidate was blocked:', err);
}
// Follow up requests do not need to specify the image again
const followUpResult = await chat.sendMessage("But make it old-school line drawing style");
// Request and inspect the returned image
try {
const followUpInlineDataParts = followUpResult.response.inlineDataParts();
if (followUpInlineDataParts?.[0]) {
// Inspect the generated image
const followUpImage = followUpInlineDataParts[0].inlineData;
console.log(followUpImage.mimeType, followUpImage.data);
}
} catch (err) {
console.error('Prompt or candidate was blocked:', err);
}
Dart
import 'package:firebase_ai/firebase_ai.dart';
import 'package:firebase_core/firebase_core.dart';
import 'firebase_options.dart';
await Firebase.initializeApp(
options: DefaultFirebaseOptions.currentPlatform,
);
// Initialize the Gemini Developer API backend service
// Create a `GenerativeModel` instance with a Gemini model that supports image output
final model = FirebaseAI.googleAI().generativeModel(
model: 'gemini-2.0-flash-preview-image-generation',
// Configure the model to respond with text and images
generationConfig: GenerationConfig(responseModalities: [ResponseModality.text, ResponseModality.image]),
);
// Prepare an image for the model to edit
final image = await File('scones.jpg').readAsBytes();
final imagePart = InlineDataPart('image/jpeg', image);
// Provide an initial text prompt instructing the model to edit the image
final prompt = TextPart("Edit this image to make it look like a cartoon");
// Initialize the chat
final chat = model.startChat();
// To generate an initial response, send a user message with the image and text prompt
final response = await chat.sendMessage([
Content.multi([prompt,imagePart])
]);
// Inspect the returned image
if (response.inlineDataParts.isNotEmpty) {
final imageBytes = response.inlineDataParts[0].bytes;
// Process the image
} else {
// Handle the case where no images were generated
print('Error: No images were generated.');
}
// Follow up requests do not need to specify the image again
final followUpResponse = await chat.sendMessage([
Content.text("But make it old-school line drawing style")
]);
// Inspect the returned image
if (followUpResponse.inlineDataParts.isNotEmpty) {
final followUpImageBytes = response.inlineDataParts[0].bytes;
// Process the image
} else {
// Handle the case where no images were generated
print('Error: No images were generated.');
}
Unity
using Firebase;
using Firebase.AI;
// Initialize the Gemini Developer API backend service
// Create a `GenerativeModel` instance with a Gemini model that supports image output
var model = FirebaseAI.GetInstance(FirebaseAI.Backend.GoogleAI()).GetGenerativeModel(
modelName: "gemini-2.0-flash-preview-image-generation",
// Configure the model to respond with text and images
generationConfig: new GenerationConfig(
responseModalities: new[] { ResponseModality.Text, ResponseModality.Image })
);
// Prepare an image for the model to edit
var imageFile = System.IO.File.ReadAllBytes(System.IO.Path.Combine(
UnityEngine.Application.streamingAssetsPath, "scones.jpg"));
var image = ModelContent.InlineData("image/jpeg", imageFile);
// Provide an initial text prompt instructing the model to edit the image
var prompt = ModelContent.Text("Edit this image to make it look like a cartoon.");
// Initialize the chat
var chat = model.StartChat();
// To generate an initial response, send a user message with the image and text prompt
var response = await chat.SendMessageAsync(new [] { prompt, image });
// Inspect the returned image
var imageParts = response.Candidates.First().Content.Parts
.OfType<ModelContent.InlineDataPart>()
.Where(part => part.MimeType == "image/png");
// Load the image into a Unity Texture2D object
UnityEngine.Texture2D texture2D = new(2, 2);
if (texture2D.LoadImage(imageParts.First().Data.ToArray())) {
// Do something with the image
}
// Follow up requests do not need to specify the image again
var followUpResponse = await chat.SendMessageAsync("But make it old-school line drawing style");
// Inspect the returned image
var followUpImageParts = followUpResponse.Candidates.First().Content.Parts
.OfType<ModelContent.InlineDataPart>()
.Where(part => part.MimeType == "image/png");
// Load the image into a Unity Texture2D object
UnityEngine.Texture2D followUpTexture2D = new(2, 2);
if (followUpTexture2D.LoadImage(followUpImageParts.First().Data.ToArray())) {
// Do something with the image
}
Recursos, limitações e práticas recomendadas
Modalidades e recursos compatíveis
Confira abaixo as modalidades e recursos compatíveis para saída de imagem de um modelo Gemini. Cada recurso mostra um exemplo de comando e tem um exemplo de código acima.
Texto em imagem (somente texto em imagem)
- Gere uma imagem da Torre Eiffel com fogos de artifício ao fundo.
Texto para imagem (renderização de texto)
- Gere uma foto cinematográfica de um prédio grande com essa projeção de texto gigante mapeada na frente do edifício.
Texto para imagens e texto (intercalado)
Gere uma receita ilustrada de paella. Crie imagens junto com o texto enquanto gera a receita.
Gere uma história sobre um cachorro em um estilo de animação de desenho animado 3D. Para cada cena, gere uma imagem.
Imagens e texto para imagens e texto (intercalados)
- [imagem de uma sala mobiliada] + Quais outras cores de sofás ficariam boas no meu espaço? Você pode atualizar a imagem?
Edição de imagens (texto e imagem para imagem)
[imagem de scones] + Edite esta imagem para que ela pareça um desenho animado
[imagem de um gato] + [imagem de um travesseiro] + Crie um ponto cruz do meu gato neste travesseiro.
Edição de imagens multiturno (chat)
- [imagem de um carro azul] + Transforme este carro em um conversível., depois Agora mude a cor para amarelo.
Limitações e práticas recomendadas
Confira a seguir as limitações e práticas recomendadas para a saída de imagens de um modelo Gemini.
Nesta versão experimental pública, o Gemini oferece suporte ao seguinte:
- Gerar imagens PNG com dimensão máxima de 1024 px.
- Gerar e editar imagens de pessoas.
- Usar filtros de segurança que oferecem uma experiência do usuário flexível e menos restritiva.
Para ter o melhor desempenho, use os seguintes idiomas:
en
,es-mx
,ja-jp
,zh-cn
,hi-in
.A geração de imagens não aceita entradas de áudio ou vídeo.
A geração de imagens nem sempre é acionada. Estes são alguns problemas conhecidos:
O modelo pode gerar apenas texto.
Peça imagens explicitamente (por exemplo, "gere uma imagem", "forneça imagens ao longo do processo", "atualize a imagem").O modelo pode parar de gerar no meio da resposta.
Tente de novo ou use outro comando.O modelo pode gerar texto como uma imagem.
Peça saídas de texto explicitamente. Por exemplo, "gere texto narrativo com ilustrações".
Ao gerar texto para uma imagem, o Gemini funciona melhor se você primeiro gerar o texto e depois pedir uma imagem com ele.