コレクションでコンテンツを整理
必要に応じて、コンテンツの保存と分類を行います。
アプリへの機械学習機能の追加
Firebase ML を使用してカスタムモデルのトレーニングとデプロイを行うことも、Cloud Vision API による手軽なソリューションを利用することもできます。
plat_ios
plat_android
デバイス上で機能するカスタムモデルをデプロイ
既存の TensorFlow Lite モデルから着手する場合でも、また独自のモデルをトレーニングする場合であっても、Firebase ML によるモデルのデプロイを使用して、無線(OTA)でユーザーにモデルを配信できます。この方法では、モデルが必要な場合にのみデバイスにダウンロードされるので、当初のアプリのインストール サイズが小さくなります。また、複数のモデルを A/B テストしてそのパフォーマンスを評価できるほか、アプリ全体の再公開を必要とせずに、定期的にモデルを更新することもできます。Firebase コンソールにモデルをアップロードすれば、あとは Google がそのモデルのホストとアプリへの提供を担当します。また、必要に応じ、Firebase Admin SDK を使用して、ML 本番環境パイプラインまたは Colab ノートブックからモデルを直接デプロイすることもできます。
すぐに使える API により、一般的なユースケースを解決
Firebase ML には、一般的なモバイル ユースケースであるテキストの認識、画像へのラベル付け、ランドマークの認識ですぐに使用できるクラウドベースの API がひと揃い付属しています。これらの API は、オンデバイス API と異なり、Google Cloud の機械学習テクノロジー機能を活用して高い精度を発揮します。ライブラリにデータを渡すだけで Google Cloud 上で動作しているモデルへのリクエストがシームレスに発行され、必要な情報が返されます。これらの処理すべてを数行のコードで実現できます。
eBay Motors の事例: Firebase ML を使用して画像の迅速な分類、コストの削減、ユーザー エクスペリエンスの向上を実現
eBay Motors は、ユーザーが地元で販売されている車を検索して見つけられるようにしました。同社が Firebase ML で AutoML Vision Edge を使用して独自のモデルを作成し、ユーザー エクスペリエンスの向上を実現した様子をご覧ください。
詳細
arrow_forward
ドキュメント
Learn how to get started with ML by reviewing our technical documentation.
[null,null,[],[],[],null,[]]