Gemini API を使用してマルチターンの会話(チャット)を作成する


Gemini API を使用すると、複数のターンにわたる自由形式の会話を作成できます。Vertex AI in Firebase SDK は会話の状態を管理することでプロセスを簡素化するため、generateContentStream()generateContent() とは異なり、会話履歴を自分で保存する必要はありません。

始める前に

まだ行っていない場合は、スタートガイドを完了してください。Firebase プロジェクトの設定、アプリの Firebase への接続、SDK の追加、Vertex AI サービスの初期化、GenerativeModel インスタンスの作成方法が記載されています。

チャット プロンプト リクエストを送信する

マルチターンの会話(チャットなど)を構築するには、まず startChat() を呼び出してチャットを初期化します。次に、sendMessageStream()(または sendMessage())を使用して新しいユーザー メッセージを送信します。これにより、メッセージとレスポンスがチャット履歴に追加されます。

会話内のコンテンツに関連付けられた role には、次の 2 つのオプションがあります。

  • user: プロンプトを提供するロール。この値は sendMessageStream()(または sendMessage())の呼び出しのデフォルト値です。別のロールが渡された場合、関数は例外をスローします。

  • model: レスポンスを提供するロール。このロールは、既存の historystartChat() を呼び出す場合に使用できます。

レスポンスをストリーミングするか(sendMessageStream)、結果全体が生成されるまでレスポンスを待つか(sendMessage)を選択します。

ストリーミング

モデル生成の結果全体を待たずに、ストリーミングを使用して部分的な結果を処理することで、インタラクションを高速化できます。

ストリーミングなし

または、ストリーミングではなく結果全体が返されるのを待つこともできます。結果は、モデルが生成プロセス全体を完了した後にのみ返されます。

ユースケースとアプリに適したモデルと、必要に応じてロケーションを選択する方法を学びます。

Google アシスタントの機能

その他の機能を試す

コンテンツ生成を制御する方法

Vertex AI Studio を使用して、プロンプトとモデル構成をテストすることもできます。

サポートされているモデルの詳細

さまざまなユースケースで利用可能なモデルと、その割り当て料金について学びます。


Vertex AI in Firebase の使用感に関するフィードバックを送信する